第七题:
将函数$f(x)= \sin2x$的图像向右平移$\phi(0<\phi<\frac{\phi }{2})$个单位得到函数$g(x)$的图像,以$f(x)$、$g(x)$图像相邻的三个交点为顶点的三角形的面积为$\frac{\sqrt{3}\pi }{2}$,则$\phi$是?
标答给的是图像解法,这里给出代数解法:
有$$g(x) = \sin(2(x - \phi)) = \sin(2x - 2\phi)$$
即解$$\sin(2x) = \sin(2x - 2\phi) $$
利用三角函数的性质,$\sin A = \sin B$当且仅当:
- $A = B + 2k\pi$或
- $A+B = \pi + 2k\pi$,其中$k$为整数。
故:
$$i). 2x = 2x - 2\phi + 2k\pi⇒ 0 = -2\phi + 2k\pi⇒ \phi = k\pi$$
$$ii). 2x = \pi - (2x - 2\phi) + 2k\pi ⇒ 2x = \pi - 2x + 2\phi + 2k\pi ⇒ 4x = \pi + 2\phi + 2k\pi ⇒ x = \frac{\pi}{4} + \frac{\phi}{2} + \frac{k\pi}{2} $$
因此,交点的 $x$ 坐标为:
$$x = \frac{\pi}{4} + \frac{\phi}{2} + \frac{k\pi}{2} $$
其中 $k$ 为整数。
取 $k = 0, 1, 2$ ,得到三个相邻的交点:
$$1. x_1 = \frac{\pi}{4} + \frac{\phi}{2} $$
$$2. x_2 = \frac{\pi}{4} + \frac{\phi}{2} + \frac{\pi}{2} = \frac{3\pi}{4} + \frac{\phi}{2} $$
$$3. x_3 = \frac{\pi}{4} + \frac{\phi}{2} + \pi = \frac{5\pi}{4} + \frac{\phi}{2} $$
因此,三个交点的坐标为:
$\left( \frac{\pi}{4} + \frac{\phi}{2}, \cos\phi \right) $,$\left( \frac{3\pi}{4} + \frac{\phi}{2}, -\cos\phi \right) $,$\left( \frac{5\pi}{4} + \frac{\phi}{2}, \cos\phi \right) $
故:
$$S=\frac{|(y_2-y_1)|(x_3-x_1)}{2}$$
代入解得:
$$|\cos\phi| = \frac{\sqrt{3}}{2}$$
那么:
$$1. \cos\phi = \frac{\sqrt{3}}{2} ⇒ \phi = \frac{\pi}{6} + 2k\pi 或 \phi = \frac{11\pi}{6} + 2k\pi , k 为整数。$$
$$2. \cos\phi = -\frac{\sqrt{3}}{2} ⇒ \phi = \frac{5\pi}{6} + 2k\pi 或 \phi = \frac{7\pi}{6} + 2k\pi , k 为整数。$$
又:$$0<\phi<\frac{\phi }{2}$$
故:$$\boxed{\phi=\frac{\phi }{6}}$$